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Related Works

▪ Data-driven approaches by learning the features using deep neural networks.
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inputs scGAN stacked-CNN

scGAN: V. Nguyen, et al., “Shadow detection with conditional generative adversarial networks,” In ICCV, 2017.
stacked-CNN: T. F. Y. Vicente, et al., “Large-scale training of shadow detectors with noisily-annotated shadow examples,” in ECCV, 2016. 
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➢ Shadow detection requires 

an understanding of the 

global image context

Motivation #1: Global Context  
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➢Analyze the global image 

context in a direction-

aware manner
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Motivation #2: Direction-aware Context  



Motivation #2: Direction-aware Context   
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inputs scGAN stacked-CNN

ours



Spatial Recurrent Neural Network (RNN)

(a) input feature map
(after 1*1 conv)

1st round in spatial RNN 

S. Bell, et al., “Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks,” in CVPR, 2016.
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Spatial Recurrent Neural Network (RNN)

(a) input feature map
(after 1*1 conv)

(b) intermediate
feature map

(c) output map

1st round in spatial RNN 2nd round in spatial RNN 

S. Bell, et al., “Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks,” in CVPR, 2016.
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Spatial Recurrent Neural Network (RNN)
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Direction-aware Spatial Context (DSC) Module
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Direction-aware Spatial Context (DSC) Module
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Direction-aware Spatial Context (DSC) Module
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Method Overview 

input

Feature Extraction 
Network

DSC module

DSC module

DSC module

DSC module

DSC module

DSC module

Direction-aware
Spatial Context Module

concat 1×1 conv & 
up-sampling
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concat & 1×1 conv

MLIF



Method Overview 
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Training and Testing

Loss Function:

➢ Weighted cross entropy loss:

y: ground truth value      p: prediction label       𝑁𝑛: the number of non-shadow pixels

𝑁𝑝: the number of shadow pixels     TP: true positive      TN: true negative
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Datasets: 

➢ Training: SBU training set (4089 images)

➢ Testing: SBU testing set (638 images) and UCF testing set (76 images)

SBU: T. F. Y. Vicente, et al., “Large-scale training of shadow detectors with noisily-annotated shadow examples,” in ECCV, 2016. 
UCF: J. Zhu, et al., “Learning to recognize shadows in monochromatic natural images,” in CVPR, 2010.



Training and Testing

Testing:

➢ Shadow map: the mean of the score maps over the MLIF layer and the fusion layer                       

➢ Post-processing: conditional random field (CRF) 
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Results - Balance Error Rate (%)
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scGAN
[ICCV 17’]

scGAN
[ICCV 17’]

DSC 
(ours)

5.59

9.10

stacked-
CNN

[ECCV 16’]

11.00

SBU testing set UCF testing set

DSC 
(ours)

8.10

11.50

stacked-
CNN

[ECCV 16’]

13.00



Visual Comparison Results
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input ground truth scGAN 17’ stacked-CNN 16’DSC (ours)



• Ablation Analysis:Network Design Evaluation
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DSC (ours)basic+contextbasicground truthinput



Failure Cases
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input ground truth DSC (ours)



Xiaowei Hu, Chi-Wing Fu, Lei Zhu, Jing Qin, and Pheng-Ann Heng. Direction-aware Spatial Context Features for Shadow Detection and Removal. 

arXiv preprint arXiv:1805.04635, 2018.
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Our Recent Extension - Shadow Removal



Conclusion

➢ Direction-aware spatial context features for shadow detection and removal.

➢ Achieve the state-of-the-art performance on two benchmark datasets for 

shadow detection and another two benchmark datasets for shadow removal.
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Code & Results:

https://github.com/xw-hu/DSC

Poster: D12

https://github.com/xw-hu/DSC


Q&A

Thank you!
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Code & Results:

https://github.com/xw-hu/DSC

Poster: D12

https://github.com/xw-hu/DSC

