Supplementary material:

Direction-aware Spatial Context Features for Shadow Detection
There are two parts in this supplementary material.

The first part (part 1) presents additional comparison results against the following works:


The second part (part 2) presents more results produced from our method.
Part 1. Additional Comparison Results

Figure 1: More visual comparison results #1 (white indicates shadows and black indicates non-shadows).
Figure 2: More visual comparison results #2 (white indicates shadows and black indicates non-shadows).
Figure 3: More visual comparison results #3 (white indicates shadows and black indicates non-shadows).
Figure 4: More visual comparison results #4 (white indicates shadows and black indicates non-shadows).
Figure 5: More visual comparison results #5 (white indicates shadows and black indicates non-shadows).
Figure 6: More visual comparison results #6 (white indicates shadows and black indicates non-shadows).
Figure 7: More visual comparison results #7 white indicates shadows and black indicates non-shadows).
Figure 8: More visual comparison results #8 (white indicates shadows and black indicates non-shadows).
Figure 9: More visual comparison results #9 (white indicates shadows and black indicates non-shadows).
Figure 10: More visual comparison results #10 (white indicates shadows and black indicates non-shadows).
Part 2. Additional Shadow Detection Results

Figure 11: Additional result #1 from our method. Top row: input photo (real). Bottom row: our result. Our method can effectively detect the shadows of the input image, but it still misses the tiny shadows casted by the tiny stones on the ground.
Figure 12: Additional result #2 from our method. Top row: input photo (real). Bottom row: our result.
Figure 13: Additional result #3 from our method. Top row: input photo (real). Bottom row: our result.
Figure 14: Additional result #4 from our method. Top row: input photo (real). Bottom row: our result.
Figure 15: Additional result #5 from our method. Top row: input photo (real). Bottom row: our result.
Figure 16: Additional result #6 from our method. Top row: input photo (real). Bottom row: our result.
Figure 17: Additional result #7 from our method. Top row: input photo (real). Bottom row: our result.
Figure 18: Additional result #8 from our method. Top row: input photo (real). Bottom row: our result.
Figure 19: Additional result #9 from our method. Top row: input photo (real). Bottom row: our result.
Figure 20: Additional result #10 from our method. Top row: input photo (real). Bottom row: our result.
Figure 21: Additional result #11 from our method. Top row: input photo (real). Bottom row: our result.
Figure 22: Additional result #12 from our method. Top row: input photo (real). Bottom row: our result.
Figure 23: Additional result #13 from our method. Top row: input photo (real). Bottom row: our result.
Figure 24: Additional result #14 from our method. Top row: input photo (real). Bottom row: our result.
Figure 25: Additional result #15 from our method. Top row: input photo (real). Bottom row: our result.
Figure 26: Additional result #16 from our method. Top row: input photo (real). Bottom row: our result.
Figure 27: Additional result #17 from our method. Top row: input photo (real). Bottom row: our result.
Figure 28: Additional result #18 from our method. Top row: input photo (real). Bottom row: our result. Our method can effectively detect the shadow regions of the input image, but again, misses the tiny shadows on the ground.
Figure 29: Additional result #19 from our method. Top row: input photo (real). Bottom row: our result.
Figure 30: Additional result #20 from our method. Top row: input photo (real). Bottom row: our result.