

Mask-ShadowGAN: Learning to Remove Shadows from Unpaired Data

Motivation #1:

Limitations of paired training data:

- \succ It is very tedious to prepare the training data.
- \succ The approach limits the kinds of scenes that data can be prepared.
- > Training pairs may have inconsistent colors or shift in camera views.

Learn to remove shadows from unpaired training data:

Our Unpaired Shadow Removal Dataset - USR

- \geq 2,445 shadow images (training : testing = 1,956 : 289)
- > 1,770 shadow-free images (training)
- Shadows are cast by various kinds of objects, e.g., trees, buildings, traffic signs, persons, umbrellas, railings, etc.
- Existing datasets cover only hundreds of different backgrounds, while ours cover over a thousand different backgrounds.

This work was supported by the National Basic Program of China, 973 Program (Project no. 2015CB351706), the Research Committee Funding (Direct Grants) under project code - 4055103. the Shenzhen Science and Technology Program (JCYJ20170413162256793 & JCYJ20170413162256793 & JCYJ2017041316225679

Xiaowei Hu¹, Yitong Jiang², Chi-Wing Fu^{1,2}, and Pheng-Ann Heng^{1,2} ¹The Chinese University of Hong Kong ²Shenzhen Institutes of Advanced Technology

Motivation #2:

- (a) Cycle-consistency constraint (conventional)
- \succ On the same background, we may have different shadows.
- > However, the generator Gs can only produce a unique shadow image from a given shadow-free image (background).
- > The generated shadow image cannot match different input shadow images (leftmost) and the cycle-consistency constraint cannot hold.

Mask-ShadowGAN

(b) Mask-guided cycle-consistency constraint (ours)

- > On the same background, Mask-ShadowGAN can generate different shadow images.
- Our key idea is to first learn to produce a shadow mask from the input shadow image during the training and generate the shadow images with the help of shadow masks.

Experimental Results

• Comparison using USR testing set (user study)

Trained on	Methods	Rating (mean & standard dev.)
USR (unpaired)	Mask-ShadowGAN	$\textbf{6.30} \pm 2.97$
Trained on	DSC-I [<i>TPAMI 19</i> ']	4.78 ± 2.92
ISTD (paired)	DSC-S [TPAMI 19']	4.60 ± 2.66
	Gong et al. [BMVC 14']	2.82 ± 1.76
Trained on	Guo et al. [TPAMI 13']	2.31 ± 1.90
SRD (paired)		

Comparison using SRD & ISTD testing sets (RMSE)

Training data	Methods	SRD	ISTD
unpaired	Mask-ShadowGAN	7.32	7.61
	CycleGAN [ICCV 17']	9.14	8.16
paired	DSC [TPAMI 19']	6.21	6.67
	ST-CGAN [CVPR 18']	-	7.47
	DeshadowNet [CVPR 17']	6.64	-
-	Gong [BMVC 14']	8.73	8.53
	Guo et al. [TPAMI 13']	12.60	9.30
	Yang <i>et al.</i> [<i>TIP 12</i> ']	22.57	15.63

