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 Goal: highlight the most visually distinctive objects in an image

 Applications: weakly-supervised object detection, visual tracking, etc
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Saliency Detection

input image saliency map



1.  Detect the salient objects
• Global perception of saliency 

• (where the salient objects are)
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"Salient object detection: A survey”, Ali, Cheng, Hou, Jiang, Li. ArXiv 2014

Saliency Detection: A Two-stage View

2.  Segment the accurate regions of salient objects
• Precise object localization



 Extract discriminative saliency features while keeping spatial information
• Process the two stages simultaneously

 Deep high-level features are better for detection than hand-crafted features

 High-level features are unfriendly to segmentation due to its low resolution
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FCN

Bilinear Upscale

Recent Work: FCNs

What we want indeed!



 [Hou et al.] exploited complementary information of multi-level features
• Conduct prediction at one stage, making results still unsatisfactory

DSS [Hou et al., 2017]
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Recent Work: FCNs

SRM [Wang et al., 2017] 

 [Wang et al.] presented a stage-wise refinement network
• Low-level features tend to introduce non-salient regions

• Do not preserve the previous saliency maps in multi-stage refinement



 Alternatively leverage the low-level detailed features and the high-level 
semantic features to do refinement

 Apply residual learning to saliency map refinement
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Our Motivation



 Residual Refinement Block for multiple-stage refinement
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Our Model

 Alternatively leverage low-level features and high-level features

 Deep supervision for initial prediction and each refinement stage
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Residual Refinement

 Ease the optimization task with a 
faster convergence at early stages

 Reduce the training error over   
directly learning the underlying 
saliency mapping



 Training
• On the MSRA10K dataset (10K images)

• ResNeXt101-32x4d as feature extraction network, pre-trained on ImageNet

• Takes only 80 minutes on a single GPU

 Testing
• On five benchmark datasets: ECSSD (1K images), HKU-IS (~4K images), PASCAL-S 

(0.8K images), SOD (0.3K images), DUT-OMRON (~6K images)

• Apply CRF (fully connected conditional random field) to enhance the saliency maps
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Experimental Setting
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Comparison with State-of-the-arts
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Visual Comparison



 Performance increases in the first 6 iterations, and then becomes stable
 Total recurrent step: 6 (balancing the performance and time complexity)
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Ablation Analysis



 Model with residual refinement is better than that without residual refinement
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Ablation Analysis



 The result confirms the advantage of alternatively leveraging L and H. 
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Ablation Analysis



 A recurrent residual refinement network (R3Net) to progressively 
refine the saliency maps by building a sequence of RRBs to 
alternatively use the low-level features and high-level features.

 Achieve the best performance on all the five benchmark datasets.
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Conclusion

Code & Results:
github.com/zijundeng/R3Net

https://github.com/zijundeng/R3Net


Thank you!
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Q & A

Code & Results:
github.com/zijundeng/R3Net

https://github.com/zijundeng/R3Net

