R³Net: Recurrent Residual Refinement Network for Saliency Detection

Zijun Deng^{1,*}, Xiaowei Hu^{2,*}, Lei Zhu^{3,2}, Xuemiao Xu¹, Jing Qin³, Guoqiang Han¹, and Pheng–Ann Heng^{2,4}

¹South China University of Technology ²The Chinese University of Hong Kong ³The Hong Kong Polytechnic University ⁴Shenzhen Institutes of Advanced Technology

Soal: highlight the most *visually distinctive* objects in an image

input image

> Applications: weakly-supervised object detection, visual tracking, etc.

Saliency Detection: A Two-stage View

- 1. Detect the salient objects
 - Global perception of saliency
 - (where the salient objects are) ullet

- 2. Segment the accurate regions of salient objects
 - Precise object localization

"Salient object detection: A survey", Ali, Cheng, Hou, Jiang, Li. ArXiv 2014

Extract discriminative saliency features while keeping spatial information

• Process the two stages simultaneously

> Deep high-level features are better for detection than hand-crafted features

> High-level features are unfriendly to segmentation due to its low resolution

Recent Work: FCNs

> [Hou et al.] exploited complementary information of multi-level features

- Conduct prediction at one stage, making results still unsatisfactory
- > [Wang et al.] presented a stage-wise refinement network
 - Low-level features tend to introduce non-salient regions
 - Do not preserve the previous saliency maps in multi-stage refinement

- Alternatively leverage the low-level detailed features and the high-level semantic features to do refinement
- > Apply *residual learning* to saliency map refinement

Our Model

- Residual Refinement Block for multiple-stage refinement
- Alternatively leverage low-level features and high-level features
- > Deep supervision for initial prediction and each refinement stage

Residual Refinement

- Ease the optimization task with a faster convergence at early stages
- Reduce the training error over directly learning the underlying saliency mapping

Experimental Setting

Training

- On the MSRA10K dataset (10K images)
- ResNeXt101-32x4d as feature extraction network, pre-trained on ImageNet
- Takes only 80 minutes on a single GPU

Testing

- On five benchmark datasets: ECSSD (1K images), HKU-IS (~4K images), PASCAL-S (0.8K images), SOD (0.3K images), DUT-OMRON (~6K images)
- Apply CRF (fully connected conditional random field) to enhance the saliency maps

Comparison with State-of-the-arts

Method	ECS	SSD	HKU-IS		PASCAL-S		SOD		DUT-OMRON	
Wiethou	F_{eta}	MAE	F_{eta}	MAE	F_{β}	MAE	F_{eta}	MAE	F_{eta}	MAE
MR [Yang <i>et al.</i> , 2013]	0.736	0.189	0.715	0.174	0.666	0.223	0.619	0.273	0.610	0.187
wCtr* [Zhu et al., 2014]	0.716	0.171	0.726	0.141	0.659	0.201	0.632	0.245	0.630	0.144
BSCA [Qin et al., 2015]	0.758	0.183	0.723	0.174	0.666	0.224	0.634	0.266	0.616	0.191
MC [Zhao <i>et al.</i> , 2015]	0.822	0.106	0.798	0.102	0.740	0.145	0.688	0.197	0.703	0.088
LEGS [Wang et al., 2015]	0.827	0.118	0.770	0.118	0.756	0.157	0.707	0.215	0.669	0.133
MDF [Li and Yu, 2015]	0.831	0.108	0.860	0.129	0.759	0.142	0.785	0.155	0.694	0.092
ELD [Lee et al., 2016]	0.867	0.080	0.844	0.071	0.771	0.121	0.760	0.154	0.719	0.091
DS [Li et al., 2016]	0.882	0.123	-	-	0.758	0.162	0.781	0.150	0.745	0.120
RFCN [Wang et al., 2016]	0.898	0.097	0.895	0.079	0.827	0.118	0.805	0.161	0.747	0.095
DCL [Li and Yu, 2016]	0.898	0.071	0.904	0.049	0.822	0.108	0.832	0.126	0.757	0.080
DHSNet [Liu and Han, 2016]	0.907	0.059	0.892	0.052	0.827	0.096	0.823	0.127	-	-
NLDF [Luo et al., 2017]	0.905	0.063	0.902	0.048	0.831	0.099	0.810	0.143	0.753	0.080
UCF [Zhang et al., 2017b]	0.910	0.078	0.886	0.073	0.821	0.120	0.800	0.164	0.735	0.131
DSS [Hou et al., 2017]	0.916	0.053	0.911	0.040	0.829	0.102	0.842	0.118	0.771	0.066
Amulet [Zhang et al., 2017a]	0.913	0.059	0.887	0.053	0.828	0.095	0.801	0.146	0.737	0.083
SRM [Wang et al., 2017]	0.917	0.056	0.906	0.046	0.844	0.087	0.843	0.126	0.769	0.069
R ³ Net (ours)	0.935	0.040	0.916	0.036	0.845	0.100	0.847	0.124	0.805	0.063

Visual Comparison

Ablation Analysis

Method	EC	ECSSD		HKU-IS		PASCAL-S		SOD		DUT-OMRON	
	F_{β}	MAE	F_{β}	MAE	F_{β}	MAE	F_{β}	MAE	F_{β}	MAE	
R ³ Net-0	0.918	0.049	0.900	0.044	0.831	0.101	0.816	0.128	0.769	0.079	
R ³ Net-1	0.926	0.044	0.910	0.038	0.841	0.100	0.833	0.125	0.783	0.073	
R^3 Net-2	0.931	0.043	0.911	0.038	0.844	0.104	0.836	0.127	0.787	0.073	
R ³ Net-3	0.934	0.041	0.915	0.036	0.847	0.100	0.841	0.123	0.794	0.066	
R ³ Net-4	0.932	0.042	0.912	0.038	0.843	0.102	0.841	0.125	0.782	0.073	
R ³ Net-5	0.933	0.042	0.913	0.037	0.845	0.100	0.841	0.122	0.791	0.069	
\mathbf{R}^{3} Net-6	0.935	0.040	0.916	0.036	0.845	0.100	0.847	0.124	0.805	0.063	
R ³ Net-7	0.934	0.040	0.914	0.036	0.848	0.096	0.842	0.121	0.804	0.063	
R ³ Net_w/o_r	0.931	0.042	0.910	0.039	0.839	0.103	0.839	0.121	0.782	0.077	
R ³ Net_w_s	0.933	0.041	0.914	0.037	0.841	0.102	0.842	0.122	0.794	0.070	
R ³ Net_LL	0.932	0.041	0.910	0.038	0.844	0.100	0.839	0.125	0.778	0.080	
R ³ Net_HH	0.926	0.046	0.902	0.042	0.836	0.101	0.819	0.128	0.786	0.071	

Performance increases in the first 6 iterations, and then becomes stable
Total recurrent step: 6 (balancing the performance and time complexity)

Ablation Analysis

Method	EC	ECSSD		HKU-IS		PASCAL-S		SOD		DUT-OMRON	
wichioù	F_{eta}	MAE	F_{β}	MAE	F_{β}	MAE	F_{β}	MAE	F_{β}	MAE	
R^3 Net-0	0.918	0.049	0.900	0.044	0.831	0.101	0.816	0.128	0.769	0.079	
R^3 Net-1	0.926	0.044	0.910	0.038	0.841	0.100	0.833	0.125	0.783	0.073	
R^3 Net-2	0.931	0.043	0.911	0.038	0.844	0.104	0.836	0.127	0.787	0.073	
R^3 Net-3	0.934	0.041	0.915	0.036	0.847	0.100	0.841	0.123	0.794	0.066	
R^3 Net-4	0.932	0.042	0.912	0.038	0.843	0.102	0.841	0.125	0.782	0.073	
R^3 Net-5	0.933	0.042	0.913	0.037	0.845	0.100	0.841	0.122	0.791	0.069	
\mathbf{R}^{3} Net-6	0.935	0.040	0.916	0.036	0.845	0.100	0.847	0.124	0.805	0.063	
R ³ Net-7	0.934	0.040	0.914	0.036	0.848	0.096	0.842	0.121	0.804	0.063	
R ³ Net_w/o_r	0.931	0.042	0.910	0.039	0.839	0.103	0.839	0.121	0.782	0.077	
R ³ Net_w_s	0.933	0.041	0.914	0.037	0.841	0.102	0.842	0.122	0.794	0.070	
R ³ Net_LL	0.932	0.041	0.910	0.038	0.844	0.100	0.839	0.125	0.778	0.080	
R ³ Net_HH	0.926	0.046	0.902	0.042	0.836	0.101	0.819	0.128	0.786	0.071	

> Model with residual refinement is better than that without residual refinement

Ablation Analysis

Method F_{β}	EC	ECSSD		HKU-IS		PASCAL-S		SOD		DUT-OMRON	
	F_{β}	MAE	F_{β}	MAE	F_{β}	MAE	F_{β}	MAE	F_{β}	MAE	
R^3 Net-0	0.918	0.049	0.900	0.044	0.831	0.101	0.816	0.128	0.769	0.079	
R^3 Net-1	0.926	0.044	0.910	0.038	0.841	0.100	0.833	0.125	0.783	0.073	
R^3 Net-2	0.931	0.043	0.911	0.038	0.844	0.104	0.836	0.127	0.787	0.073	
R^3 Net-3	0.934	0.041	0.915	0.036	0.847	0.100	0.841	0.123	0.794	0.066	
R^3 Net-4	0.932	0.042	0.912	0.038	0.843	0.102	0.841	0.125	0.782	0.073	
R^3 Net-5	0.933	0.042	0.913	0.037	0.845	0.100	0.841	0.122	0.791	0.069	
R ³ Net-6	0.935	0.040	0.916	0.036	0.845	0.100	0.847	0.124	0.805	0.063	
R^3 Net-7	0.934	0.040	0.914	0.036	0.848	0.096	0.842	0.121	0.804	0.063	
R ³ Net_w/o_r	0.931	0.042	0.910	0.039	0.839	0.103	0.839	0.121	0.782	0.077	
R ³ Net_w_s	0.933	0.041	0.914	0.037	0.841	0.102	0.842	0.122	0.794	0.070	
R ³ Net_LL	0.932	0.041	0.910	0.038	0.844	0.100	0.839	0.125	0.778	0.080	
R ³ Net_HH	0.926	0.046	0.902	0.042	0.836	0.101	0.819	0.128	0.786	0.071	

> The result confirms the advantage of alternatively leveraging L and H.

Conclusion

- A recurrent residual refinement network (R³Net) to progressively refine the saliency maps by building a sequence of RRBs to alternatively use the low-level features and high-level features.
- > Achieve the best performance on all the five benchmark datasets.

Code & Results: github.com/zijundeng/R3Net

Thank you!

Code & Results: github.com/zijundeng/R3Net

